Deriving thermal lattice-Boltzmann models from the continuous Boltzmann equation: theoretical aspects

نویسندگان

  • P. C. Philippi
  • L. A. Hegele
چکیده

The particles model, the collision model, the polynomial development used for the equilibrium distribution, the time discretization and the velocity discretization are factors that let the lattice Boltzmann framework (LBM) far away from its conceptual support: the continuous Boltzmann equation (BE). Most collision models are based on the BGK, single parameter, relaxation-term leading to constant Prandtl numbers. The polynomial expansion used for the equilibrium distribution introduces an upper-bound in the local macroscopic speed. Most widely used time discretization procedures give an explicit numerical scheme with second-order time step errors. In thermal problems, quadrature did not succeed in giving discrete velocity sets able to generate multi-speed regular lattices. All these problems, greatly, difficult the numerical simulation of LBM based algorithms. In present work, the systematic derivation of lattice-Boltzmann models from the continuous Boltzmann equation is discussed. The collision term in the linearized Boltzmann equation is modeled by expanding the distribution function in Hermite tensors. Thermohydrodynamic macroscopic equations are correctly retrieved with a second-order model. Velocity discretization is the most critical step in establishing regular-lattices framework. In the quadrature process, it is shown that the integrating variable has an important role in defining the equilibrium distribution and the lattice-Boltzmann model, leading, alternatively, to temperature dependent velocities (TDV) and to temperature dependent weights (TDW) lattice-Boltzmann models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow

This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...

متن کامل

Buoyancy Term Evolution in the Multi Relaxation Time Model of Lattice Boltzmann Method with Variable Thermal Conductivity Using a Modified Set of Boundary Conditions

During the last few years, a number of numerical boundary condition schemes have been used to study various aspects of the no-slip wall condition using the lattice Boltzmann method. In this paper, a modified boundary condition method is employed to simulate the no-slip wall condition in the presence of the body force term near the wall. These conditions are based on the idea of the bounce-back ...

متن کامل

Introduced a Modified Set of Boundary Condition of Lattice Boltzmann Method Based on Bennett extension in Presence of Buoyancy Term Considering Variable Diffusion Coefficients

Various numerical boundary condition methods have been proposed to simulate various aspects of the no-slip wall condition using the Lattice Boltzmann Method. In this paper, a new boundary condition scheme is developed to model the no-slip wall condition in the presence of the body force term near the wall which is based on the Bennett extension. The error related to the new model is smaller tha...

متن کامل

Using Lattice Boltzmann Method to Investigate the Effects of Porous Media on Heat Transfer from Solid Block inside a Channel

A numerical investigation of forced convection in a channel with hot solid block inside a square porous block mounted on a bottom wall was carried out. The lattice Boltzmann method was applied for numerical simulations. The fluid flow in the porous media was simulated by Brinkman-Forchheimer model. The effects of parameters such as porosity and thermal conductivity ratio over flow pattern and t...

متن کامل

An H-Theorem for the Lattice Boltzmann Approach to Hydrodynamics

– The lattice Boltzmann equation can be viewed as a discretization of the continuous Boltzmann equation. Because of this connection it has long been speculated that lattice Boltzmann algorithms might obey an H-theorem. In this letter we prove that usual nine-velocity models do not obey an H-theorem but models that do obey an H-theorem can be constructed. We consider the general conditions a lat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005